Protective effect of VK2 on glucocorticoid-treated MC3T3-E1 cells

نویسندگان

  • Yue-Lei Zhang
  • Jun-Hui Yin
  • Hao Ding
  • Wei Zhang
  • Chang-Qing Zhang
  • You-Shui Gao
چکیده

Glucocorticoids (GCs) contribute to the increased incidence of secondary osteoporosis and osteonecrosis, and medications for the prevention and treatment of these complications have been investigated for many years. Vitamin K2 (VK2) has been proven to promote bone formation both in vitro and in vivo. In this study, we examined the effects of VK2 on dexamethasone (DEX)-treated MC3T3-E1 osteoblastic cells. We observed that VK2 promoted the proliferation and enhanced the survival of dexamethasone-treated MC3T3-E1 cells. In addition, VK2 upregulated the expression levels of osteogenic marker proteins, such as Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin, which were significantly inhibited by dexamethasone. On the whole, our findings indicate that VK2 has the potential to antagonize the effects of GCs on MC3T3-E1 cells, and may thus prove to be a promising agent for the prevention and treatment of GC-induced osteoporosis and osteonecrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells

Objective(s): The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells. Materials and Methods: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro exper...

متن کامل

Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo

BACKGROUND Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-indu...

متن کامل

Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteobl...

متن کامل

miR-365 Ameliorates Dexamethasone-Induced Suppression of Osteogenesis in MC3T3-E1 Cells by Targeting HDAC4

Glucocorticoid administration is the leading cause of secondary osteoporosis. In this study, we tested the hypotheses that histone deacetylase 4 (HDAC4) is associated with glucocorticoid-induced bone loss and that HDAC4 dependent bone loss can be ameliorated by miRNA-365. Our previous studies showed that miR-365 mediates mechanical stimulation of chondrocyte proliferation and differentiation by...

متن کامل

Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate.

Relatively large amounts of inorganic polyphosphate [poly(P)] (400 microM) have been found in normal osteoblasts. The effect of poly(P) with an average chain length of 65 phosphate residues on cell calcification was therefore investigated with the use of MC3T3-E1 cells. Expression of both osteopontin and osteocalcin was induced by poly(P) (0.1 approximately 1 mM), and cells treated with poly(P)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017